# Heraeus

## SUPRASIL® 313



### Highlights

- Direct formed Near-Net-Shape ingot
  - → Production process cost optimized to maximize yield
  - → Fine ground on request
- Broad transmission range from the UV to the IR
- OH Content ≤ 250 ppm
- Low absorption\* Absorption at 1064 nm: ≤ 3 ppm/cm

#### Index homogeneity

#### Striation

No striations in the primary functional direction, i.e. striae class A according to MIL-G-174-B

#### Index (∆n)

- In the basic version the homogeneity of Suprasil<sup>®</sup> 313 is not specified and not measured [typically less than 10 · 10<sup>-6</sup>].
- Index homogeneity can be custom tailored to specifications on request at additional cost.

#### Fluorescence

- None
- At stimulation with light at a wavelength of  $\lambda = 254$  nm (Hg low pressure lamp and Schott UG 5 filter) and visual inspection.

### Residual strain

- ≤ 5 nm/cm
- The residual strain value is specified over 90% of the diameter or edge length of a fine ground piece, or 80% of a raw formed ingot.

#### Bubbles and inclusions 1)

#### **Bubble Grade**

Grade 0 (according to DIN 58927)

#### Bubbles according to DIN ISO 10110

= 1 / 1\*0.08 for 100 cm<sup>3</sup>

#### Inclusions

None

1) Bubbles and inclusions < 0.08 mm diameter are not counted.

#### Application range

Suprasil<sup>®</sup> 313 may be used for optics requiring high transmission and low absorption from UV to IR combined with low bubble & inclusion content. Optics may include windows, lenses, laser debris shields and mirror substrates.

## Heraeus

#### Typical transmission graph

(including reflection losses) for a wall thickness of 10 mm



#### Decadic absorption coefficient at 200 nm

$$\label{eq:k200} \begin{split} k_{200} &< 0.0025 \ \text{cm}^{\text{-1}} \ \text{(typical)} \\ k_{200} &< 0.005 \ \text{cm}^{\text{-1}} \ \text{(specified)} \end{split}$$

Internal transmission T =  $10^{-kd}$ and d = wall thickness



#### Infrared absorption (typical)\*

= OH absorption absorption at 1064 nm<sup>1), 2)</sup>  $\leq$  3 ppm/cm

1) Kondilenko & Co-Workers, Ginzton Lab, Stanford University, private communication, 2005

2) Dr. Mühlig, IPHT Jena

\* Data was taken under laboratory conditions. Actual data may differ. Customer is recommended to test under his own environmental conditions.

| Germany                         | USA                              | UK                            | China                                |
|---------------------------------|----------------------------------|-------------------------------|--------------------------------------|
| Heraeus Quarzglas GmbH & Co. KG | Heraeus Quartz North America LLC | Heraeus Conamic UK Ltd.       | Heraeus (China) Investment Co., Ltd. |
| Heraeus Conamic                 | Heraeus Conamic                  | Neptune Road, Wallsend        | Heraeus Conamic                      |
| Optics                          | Optics                           | Tyne & Wear NE28 6DD          | Building 5,                          |
| Quarzstraße 8                   | 100 Heraeus Blvd.                | United Kingdom                | No. 406 Guilin Road, Xuhui District, |
| 63450 Hanau                     | Buford, GA 30518                 | Phone +44 (191) 259 8454      | Shanghai 200233                      |
| Phone +49 (6181) 35-62 85       | Phone +1 (678) 714-4350          | Fax +44 (191) 263 8040        | Telefon +86 (21) 3357 5175           |
| Fax +49 (6181) 35-62 70         | Fax +1 (678) 714-4355            | conamic.optics.uk@heraeus.com | Fax +86 (21) 3357 5230               |
| conamic.optics.eu@heraeus.com   | conamic.optics.us@heraeus.com    |                               | conamic.optics.cn@heraeus.com        |